
12
Resumen
Este estudio describe cómo las estrategias de
enseñanza basadas en la neuroplasticidad pueden
mejorar el razonamiento lógico-matemático en
estudiantes con Trastorno del Espectro Autista (TEA)
y Trastorno por Déficit de Atención e Hiperactividad
(TDAH). Basado en un diseño de métodos mixtos que
combina una revisión sistemática, una intervención
controlada y una evaluación multimodal, el estudio
reveló una mejora drástica en el rendimiento
académico, el funcionamiento cognitivo y las
conexiones neuronales. Intervenciones como
la gamificación adaptativa, los materiales
manipulativos multisensoriales y las rutinas
metacognitivas indicaron un aumento del 32%
en la capacidad de resolución de problemas en
el grupo experimental (en comparación con el 8%
del grupo control). Los niños con TEA mostraron un
mayor reconocimiento de patrones, mientras que
los niños con TDAH mostraron una mayor atención
y control inhibitorio. Las neuroimágenes indicaron
una mayor actividad de la corteza prefrontal
dorsolateral (CPDL) y una mayor conectividad
con el lóbulo parietal, lo que indica el papel de la
neuroplasticidad en el aprendizaje. Los hallazgos,
que trascienden la educación y la neurociencia,
ofrecen sugerencias prácticas para aulas inclusivas
y exigen la formación docente y la reforma de
políticas para educar a estudiantes neurodiversos.
Palabras clave
Neuroplasticidad, educación matemática, TEA,
TDAH, aprendizaje inclusivo
Abstract
This study outlines how neuroplasticity-based
instructional strategies can enhance logical-
mathematical reasoning in Autism Spectrum
Disorder (ASD) and Attention Deficit Hyperactivity
Disorder (ADHD) students. Based on a mixed-methods
design combining systematic review, controlled
intervention, and multimodal assessment, the
study revealed drastic improvement in academic
performance, cognitive functioning, and neural
connections. Interventions such as adaptive
gamification, multisensory manipulatives, and
metacognitive routines indicated a 32% increase
in problem-solving ability in the experimental group
(compared to 8% in control). Children with ASD
indicated enhanced pattern recognition, and
children with ADHD indicated enhanced attention
and inhibitory control. Neuroimaging indicated
enhanced dorsolateral prefrontal cortex (DLPFC)
activity and enhanced connectivity with the
parietal lobe, indicating the role of neuroplasticity
in learning. The findings cut across education and
neuroscience, offering actionable suggestions for
inclusive classrooms and necessitating teacher
training and policy reform to teach neurodiverse
students.
Keywords
Neuroplasticity, mathematics education, ASD,
ADHD, inclusive learning
Introduction
Neuroplasticity, as the brain's ability to change and reorganize in response to
experience, learning, and neurological damage, is now a fundamental area of study in
contemporary education in general and mathematics education in particular (Núñez,
2024). Due to its very abstract nature and demand for logic, this topic is especially difficult
for individuals with Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity
Disorder (ADHD) (Peñalba et al., 2021). These students have difficulties with elementary
cognitive processes of math learning, such as working memory, sustained attention,
and mind flexibility. However, recent research shows that educational interventions
founded on neuroplasticity can significantly enhance logical thinking development in
these groups (Alonso et al., 2024). Neuroplasticity of the brain—the adaptive power
of the nervous system to rebuild in response to stimuli—is a science foundation to
reorganize instruction in mathematics for students with ASD and ADHD (Conforme &
Morocho, 2022).
Both disorders of neurodevelopment share common cognitive profiles that, as
dynamic impairments rather than static, commit to employing evidence to generate
evidence-based interventions within education. The "math brain," supported by
distributed neural networks across the parietal, prefrontal, and temporal lobes, is
extremely plastic when engaged by means that complement the particular deficit of
each condition while taking advantage of their native strengths (Baquedano, 2024).
In ASD, in which structured thinking and accuracy prevail but openness of mind is the
catch, neuroplasticity may be shaped by approaches that translate cognitive inflexibility
into algorithmic precision (Bastidas et al., 2022).
Strategies to Improve the Acquisition of Logical
Thinking in Students with ASD and ADHD