
10.
Resumen
Este estudio investiga las características distintivas
entre resúmenes escritos por humanos y resúmenes
generados por inteligencia artificial mediante
técnicas de análisis de género. La investigación
examina resúmenes tipo mini-memoria elaborados
por estudiantes de Segundo Año de Máster en
Inglés (MA2) en la FLSH Kairouan y los compara
con resúmenes generados por IA utilizando
el Chat Generative Pre-trained Transformer 3
(ChatGPT). El análisis se centra en la recurrencia
de las funciones del texto, específicamente en
la frecuencia y calidad de elementos como
las declaraciones de propósito, metodología,
resultados y contextualización. Los hallazgos
revelan que los resúmenes escritos por humanos
presentan una presentación más equilibrada y
detallada, destacando la contextualización y
los resultados comprensivos, mientras que los
resúmenes generados por IA tienden a priorizar
declaraciones de propósito claras y explícitas,
con menos profundidad en los resultados y la
información contextual. El estudio propone métodos
avanzados de detección, incluyendo herramientas
mejoradas de análisis de texto y evaluaciones de
contextualización, para diferenciar el contenido
generado por IA. También destaca la necesidad
de una formación específica para docentes y
criterios de evaluación rigurosos para mantener la
integridad académica y abordar los desafíos que
plantea la IA en la redacción académica.
Palabras clave
Análisis de género, textos generados por IA,
resumenes académicos, comparación humano-IA.
Abstract
This study investigates the distinguishing
characteristics between human-written and AI-
generated abstracts through genre analysis
techniques. The research examines mini-memoir
abstracts authored by Second Year Master in English
(MA2) students at FLSH Kairouan and compares
them to AI-generated abstracts created using Chat
Generative Pre-Trained Transformer 3 ChatGPT.
The analysis focuses on text function recurrence,
specifically the frequency and quality of elements
such as purpose statements, methodology,
results, and contextualization. Findings reveal
that human-written abstracts exhibit a more
balanced and detailed presentation, emphasizing
contextualization and comprehensive results, while
AI-generated abstracts tend to prioritize clear
and explicit purpose statements with less depth
in results and contextual information. The study
proposes advanced detection methods, including
enhanced text analysis tools and contextualization
assessments, to differentiate AI-generated content.
It also highlights the need for targeted teacher
training and rigorous assessment criteria to uphold
academic integrity and address the challenges
posed by AI in scholarly writing.
Keywords
Genre analysis, AI-generated texts, academic
abstracts, Human-AI Comparison.
Introduction
The software TurnItIn is widely known for its role in detecting plagiarism by analyzing
textual content submitted by students against a vast database of academic papers
and online sources. Similarly, this study employs genre analysis techniques to determine
the distinctive features between human-written and AI-generated texts. Just as TurnItIn
scrutinizes linguistic patterns and semantic similarities to identify potential instances of
plagiarism, GenreItIn scrutinizes the generic structures and stylistic nuances of abstracts
in an attempt to distinguish between content authored by humans and that generated
by AI. GenreItIn is a name assigned by the researcher to the process of identifying
similar linguistic and stylistic structures in the generated texts and the human-written
texts.
Genre analysis offers a lens through which to examine the complexities of written
communication. Rooted in the exploration of textual conventions and structures, genre
analysis provides a systematic framework for understanding how different genres
function within specific social and communicative contexts (Bhatia, 1993; Swales,
1990). Within this scholarly discourse, the distinction between human-written and AI-
generated content has emerged as a topic of increasing significance, particularly
in light of advancements in artificial intelligence and natural language processing
technologies.
Using Genre Analysis to Detect AI-
Generated Academic Texts