
27.
Khosravi, H., Kitto, K., & Williams, J. J. (2019). RiPPLE: A Crowdsourced Adaptive Platform
for Recommendation of Learning Activities. In Journal of Learning Analytics (Vol.
6, Issue 3, pp. 91–105). https://doi.org/http://dx.doi.org/10.18608/jla.2019.63.12
Kopeyev, Z., Mubarakov, A., Kultan, J., Aimicheva, G., & Tuyakov, Y. (2020). Using a
Personalized Learning Style and Google Classroom Technology to Bridge the
Knowledge Gap on Computer Science. International Journal of Emerging
Techologies in Learning, 15(2), 218–229. https://doi.org/10.3991/ijet.v15i02.11602
Lee, D., Huh, Y., Lin, C.-Y., & Reigeluth, C. M. (2018). Technology functions for personalized
learning in learner-centered schools. ETR&D-Educational Technology Research
and Development, 66(5), 1269–1302.
https://doi.org/10.1007/s11423-018-9615-9
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke,
M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for
reporting systematic reviews and meta-analyses of studies that evaluate health
care interventions: Explanation and elaboration. In PLoS Medicine (Vol. 6, Issue
7). https://doi.org/10.1371/journal.pmed.1000100
Liu, Z., Dong, L., & Wu, C. (2020). Research on Personalized Recommendations for
Students’ Learning Paths Based on Big Data. International Journal of Emerging
Techologies in Learning, 15(8), 40–56. https://doi.org/10.3991/ijet.v15i08.12245
Lotfi, E. (2020). Towards a New Platform Based on Learning Outcomes Analysis for Mobile
Serious Games. International Journal of Emerging Techologies in Learning, 15(2),
42–57. https://doi.org/10.3991/ijet.v15i02.11637
Mariño, S. I. (2014). Los sistemas expertos para apoyar la gestión inteligente del
conocimiento. Revista Vínculos, 11(1), 101–108.
https://doi.org/10.14483/2322939X.8018
Marshman, E. M., DeVore, S., & Singh, C. (2018). Challenge of helping introductory
physics students transfer their learning by engaging with a self-paced learning
tutorial. Frontiers in ICT, 5(MAR). https://doi.org/10.3389/fict.2018.00003
Maseleno, A., Sabani, N., Huda, M., Ahmad, R., Jasmi, K. A., & Basiron, B. (2018).
Demystifying learning analytics in personalised learnin. International Journal of
Engineering and Technology(UAE), 7(3), 1124–1129.
https://doi.org/10.14419/ijet.v7i3.9789
Monge, V. (2015). La codificación en el método de investigación de la Grounded
Theory o Teoría Fundamentada. Innovaciones Educativas, 17(22), 77–84.
https://doi.org/10.22458/ie.v17i22.1100
Murad, H., & Yang, L. (2018). Personalized e-learning recommender system using
multimedia data. International Journal of Advanced Computer Science and
Applications, 9(9), 565–567. https://doi.org/10.14569/ijacsa.2018.090971
Niknam, M., & Thulasiraman, P. (2020). LPR: A bio-inspired intelligent learning path
recommendation system based on meaningful learning theory. Education and
Information Technologies. https://doi.org/10.1007/s10639-020-10133-3
Pane, J. (2018). Strategies for Implementing Personalized Learning While Evidence and
Resources Are Underdeveloped. RAND Corporation, October. https://doi.org/
https://doi.org/10.7249/pe314
Patrick, S, Worthen, M., & Frost, D. (2018). State Strategies to Develop Teacher Capacity
for Personalized, Competency-Based Learning. INACOL, 4, 1–7.
https://files.eric.ed.gov/fulltext/ED588371.pdf
Patrick, Susan, Worthen, M., Truong, N., & Frost, D. (2018). Fit for Purpose: Taking the
Long View on Systems Change and Policy to Support Competency Education.
CompetencyWorks Final Paper. In INACOL.
https://files.eric.ed.gov/fulltext/ED589745.pdf
Diá-logos – Año 16, N° 28, enero-junio 2024